大同大學 102 學年度研究所碩士班入學考試試題

考試科目:控制系統 所別:電機工程研究所 第1頁共2頁 註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用簡單計算器。

- 1. Consider the compensator $D(s) = 10 \frac{s+1}{10 s+1}$.
 - (a) (5%) Calculate the magnitude and phase of D(s) by hand for $\omega = 0.01, 0.1, 1, 10, 20, 30, and 50 rad/sec.$
 - (b) (5%) Sketch the asymptotes for D(s) according to Bode plot rules and compare these with your computed results from part (a).
 - (c) (5%) From (a) and (b), is D(s) the lead or lag compensator? Explain your answer and simple lead and lag will not be granted any point.
- 2. Consider the PID feedback system shown in Fig. P-2, where Y(s) is the output and R(s) is the input.
 - (a) (5%) Please find the transfer function G(s) = Y(s)/R(s).
 - (b) (10%) Use Routh's criterion to determine the <u>region</u> in the K_P versus K_D plane for which the system is stable when $K_I = 1$ (Use K_P as the horizontal axis and K_D as the vertical axis.)
 - (c) (5%) From (b), what conditions must K_P and K_D satisfy so that the system is BIBO stable?
 - (d)(10%) From (a) and (b), what conditions must K_P and K_D satisfy so that the system is stable and its output can track a step reference input with constant steady-state error?
 - (e) (5%) From (a) and (b), please find K_P and K_D so that the closed-loop system poles are located at $s=-2\pm j\sqrt{2}$.

Fig. P-2

大同大學 102 學年度研究所碩士班入學考試試題

考試科目:控制系統 所別:電機工程研究所 第2頁共2頁註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用簡單計算器。

3. Consider the continuous-time system with the following differential equation

$$\ddot{y}(t) = u(t)$$
.

- (a) (15%) Determine the state-space representation of the above continuous-time system.
- (b) (15%) Find the state-transition matrix $\Phi(t)$ by using the result of (a).
- 4. Consider the discrete-time system

$$y(k+2) - 2y(k+1) + y(k) = 0.5u(k+1) + 0.5u(k)$$

- (a) (10%) Determine the state-space representation of the above discrete-time system.
- (b) (10%) Determine a state-feedback controller such that the characteristic equation of the closed-loop system is $z^2+p_1z+p_2=0$. (in terms of p_1 and p_2)