大同大學 103 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 1/2 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 不可以使用計算器。

- 1. For the circuit in Fig. 1, $V_{DD}=2~\rm V$, $\mu_n c_{ox}=160~\mu A/\rm V^2$, $V_{tn1}=V_{tn2}=0.5~\rm V$, $(W/L)_1=4(W/L)_2=4$, $R_1=12.5~\rm k\Omega$ and transistors $\rm M_1$ and $\rm M_2$ operate in saturation region.
 - (a) (5%) Give the value of I_R .
 - (b) (5%) Find the value of R_2 if $I_o = 5\mu A$.
 - (c) (6%) Derive the expression of R_o in term of g_{m2} , r_{o2} and R_2 .
 - (d) (4%) Give the value of the output resistance R_o if $|V_A| = 5V$.

- 2. For the circuit in Fig. 2, the opamp has an open loop gain A = 40 dB, an infinite input resistance and a zero output resistance, $R_1=R_3=10~\mathrm{K}\Omega$, $R_2=90~\mathrm{K}\Omega$, the capacitor C = 10 $\mu\mathrm{F}$ is only considered in part (c), and the resistor R_L is only considered in part (d).
 - (a) (3%) Identify the feedback topology and give the feedback factor β .
 - (b) (5%) Find the dc closed loop gain v_o/v_i .
 - (c) (9%) Find the zero and pole of the transfer function $v_o(s)/v_i(s)$ when the capacitor C is parallel connected to the resistor R_2 .
 - (d) (5%) Find the minimum value of R_L if $v_i=1$ V and $i_{O,max}=50$ mA is given.

- 3. Assume all diodes in Fig. 3 have 1 V voltage drop when they conduct.
 - (a) (10%) Derive the relationship of $V_{\rm O}$ and $V_{\rm I}$ for the circuit ing Fig. 3a and Fig. 3b.
 - (b) (8%) Draw the transfer curve V_0 vs V_I and indicate the voltages at the breaking points when $-10V \le V_I \le 10V$ is given.

Fig. 3b

大同大學 103 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 2/2 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 不可以使用計算器。

- 4. (a) (5%) Find the logic function F for the circuit in Fig. 4.
 - (b) (5%) Give a circuit that performs the Boolean function $F=\overline{A \oplus B}$ and is implemented in static CMOS gate.

- 5. The circuits in Fig. 5 demonstrate different implementations of an inverter. Assume PMOS and NMOS have same parameters, ie., $\mu_n c_{ox}(W/L)_n = \mu_p c_{ox}(W/L)_p$, $V_{tn} = |V_{tp}| = V_t$.
 - (a) (2%) Which circuit consumes static power when $V_{\rm I}=V_{\rm DD}$?
 - (b) (6%) Give the V_{OH} (in terms of V_{DD} and V_t) of each circuit.
 - (c) (2%) Which circuit has V_{OL} that equals to 0 V?
 - (d) (4%) Find the voltage of V_0 (in terms of V_{DD} and V_t) in Fig. 5(b) when $V_I = V_{DD}$.

- 6. For the circuit in Fig. 6, transistors Q1 and Q2 are identical and have $\beta=100$, thermal voltage $V_T=25$ mV, $|V_A|=10$ V.
 - (a) (5%) Find the input resistance R_i .
 - (b) (5%) Find the output resistance R_o when $v_i = 0$.
 - (c) (6%) Find the global voltage gain $G_v=v_o/v_{sig}$ when $R_{sig}=0.1\,k\Omega$ and $R_L=2\,k\Omega$.

