大同大學九十一學年度研究所碩士班入學考試試題

考試科目:控制系統

所別:電機工程研究所

第1頁 共2頁

註:本次考試 不可以 参考自己的書籍及筆記; 不可以 使用字典; 不可以 使用計算器。

A linear time-invariant system is described by the differential equation

$$\frac{d^3y(t)}{dt^3} + 3\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + y(t) = r(t)$$

(a) Let the state variables be defined as $x_1(t) = y(t)$, $x_2(t) = y(t) + \frac{dy(t)}{dt}$,

 $x_3(t) = y(t) + 2\frac{dy(t)}{dt} + \frac{d^2y(t)}{dt^2}$. Write the state equations of the system in vector-matrix form:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{r}$$
, $y = \mathbf{C}\mathbf{x}$, where $\dot{\mathbf{x}} \equiv [\dot{x}_1 \ \dot{x}_2 \ \dot{x}_3]^T \equiv [dx_1/dt \ dx_2/dt \ dx_3/dt]^T$. (6%)

- (b) Find the state-transition matrix $\phi(t)$ of the state equation obtained in (a). (6%)
- (4%)(c) Find the impulse response of the system.
- The OP-amp circuit implementation of a phase-lead controller is given in Fig. 1, where $C=0.1\,\mu F$, $\,R_1=500\,k\Omega$, $\,R_2=40\,k\Omega$.

(a) Find the gain of the controller $\hat{G}_c(s) = \frac{\hat{E}_o(s)}{E_{co}(s)}$ and $G_c(s) = \frac{E_o(s)}{E_{co}(s)}$. (12%)

(4%)(b) Find the zero and the pole of $G_c(s)$.

Given the forward-path transfer function of a negative unity-feedback control system 3.

$$G(s) = \frac{K(s+3.15)}{s(s+1.5)(s+0.5)}$$

(a) Determine the type of the system.

(2%)

(b) Determine the step, ramp, and parabolic error constants of the system.

(6%)

(c) Determine the steady-state error for a unit-step input, a unit-ramp input, and a parabolic input, $(t^2/2)u_s(t)$. (Note: $u_s(t)$ denotes the unit-step function) (6%)

(6%)

4. A controlled process is modeled by the following state equations.

$$\frac{dx_1(t)}{dt} = x_1(t) - 2x_2(t), \quad \frac{dx_2(t)}{dt} = 10x_1(t) + r(t)$$

- (a) Determine the stability of the process.
- (b) If the control input r(t) is obtained from state feedback, such that

$$r(t) = -k_1 x_1(t) - k_2 x_2(t)$$

where k_1 and k_2 are real constants. Determine the region in the k_1 versus k_2 parameter plane in which the closed-loop system is asymptotically stable. (Use k_2 as the vertical axis and k_1 as the horizontal axis.) (12%)

- 5. Consider the network system shown in Fig. 2.
 - (a) Draw a signal flow graph based on the input node v_s , the variables node I_1 , v_2 , I_3 and the output node v_o . (6%)

(b) Find
$$\frac{v_o}{v_s}$$
 by Mason's gain formula. (5%)

(c) Find
$$\frac{I_3}{I_1}$$
 by Mason's gain formula. (5%)

Fig. 2

6. Consider the sampled-data system shown in Fig 3. If the input

$$r(t) = \begin{cases} 1 - \cos(t) & 0 \le t < 1.2 \text{ sec} \\ 0 & \text{otherwise} \end{cases}$$

(a) Find
$$R(z) = \mathcal{Z}[r^*(t)]$$
. (Note: $\mathcal{Z}[r^*(t)]$ denotes the Z-transform of $r^*(t)$) (5%)

(b) Draw the waveform of
$$\bar{y}(t)$$
. (5%)

(c) Find the value of
$$y(\pi/2)$$
. (4%)

(d) Find the value of
$$y(t)$$
 as $t \to \infty$. (4%)

Fig. 3