大同大學 九十一 學年度研究所碩士班入學考試試題

考試科目:數位信號處理

所別:電機工程研究所

第//頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 其可以使用計算器。

1. Determine if each of the following systems is stable, causal, linear, time-invariant, and memoryless: (18%)

(a) $F(x[n]) = e^{x[n]}$

- (b) F(x[n]) = x[-n]
- 2. Consider the discrete-time filter shown in Fig. 1, with $\alpha = 0.1$.

(a) Determine H(z), the z-transform of the system impulse response.

(b) Determine y[n], if input x[n] is a unit step sequence, u[n]. (/6%)

3. A causal linear time-invariant system has the system function $H(z) = \frac{1 + 2z^{-1} + z^{-2}}{(1 + \frac{1}{2}z^{-1})(1 - z^{-1})}$

(a) Find the impulse response of the system, h[n].

(b) Find the output of this system, y[n], for the input, $x[n] = e^{j(\pi/2)n}$ (16%)

4. Consider the system shown in Fig. 2. The input signal has the Fourier transform shown in Fig. 3 with $\Omega_0 = 2\pi (1000)$ radians/sec. The discrete-time system is an ideal

low-pass filter with frequency response. $H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & otherwise \end{cases}$

What is the minimum sampling rate $F_s = 1 / T$ such that no aliasing occurs in sampling the input? What is the minimum sampling rate such that $y_c(t) = x_c(t)$, (16)

Find the impulse response of the system shown in Fig. 4, which is composed of three identical linear time-invariant systems. The impulse response of the three systems are $h_1[n] = h_2[n] = h_3[n] = (0.8)^n u[n]$. (16%)

6 Consider a distorting system, $H_d(z) = \frac{1+3z^{-1}}{1+\frac{1}{2}z^{-1}}$, which is stable but not of

minimum phase. Find a compensating system $H_c(z)$ that compensates the frequency-response magnitude, i.e., $\left|S_c(e^{j\omega})\right| = \left|S(e^{j\omega})\right|$. (20%)

