大同大學九十三學年度研究所碩士班入學考試試題

考試科目:控制系統

: 電機工程研究所

第1頁 共2頁

註:本次考試 不可以 参考自己的書籍及筆記; 不可以 使用字典; 不可以 使用計算器。

- 1. Consider the network shown in Fig. 1, where $R_1 = 1\Omega$, $R_2 = 2\Omega$, $L_1 = 2H$, $L_2 = 1H$, and C = 1F. The voltage across the capacitor, $e_c(t)$, and the currents in the inductors, $i_1(t)$ and $i_2(t)$, are assigned as the state variables, as shown in Fig. 1. Define the state vector $\mathbf{x} = \begin{bmatrix} i_1(t) & i_2(t) & e_c(t) \end{bmatrix}^T$.
 - (a) Write the state equations of the network in vector-matrix form: $\dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, e(t)$, where $\dot{\mathbf{x}}(t) \equiv [di_1(t)/dt \ di_2(t)/dt \ de_c(t)/dt]^{\mathrm{T}}$. (12%)
 - (b) Find the transfer functions $I_1(s)/E(s)$ and $I_2(s)/E(s)$ of the network. (12%)

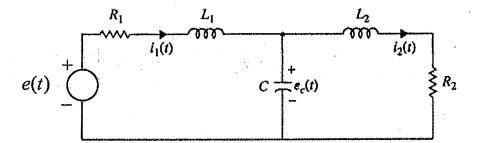


Fig. 1

- 2. Fig. 2 shows the block diagram of a dc-motor control system. The signal N(s) denotes the frictional torque at the motor shaft.
 - (a) Find the transfer function H(s) so that the output Y(s) is not affected by the disturbance torque N(s). (8%)
 - (b) With H(s) as determined in part (a), find the value of K so that the steady-state value of e(t) is equal to 0.1 when the input is a unit-ramp function, $r(t) = tu_s(t)$, $R(s) = 1/s^2$, and N(s) = 0. Apply the final-value theorem. (8%)

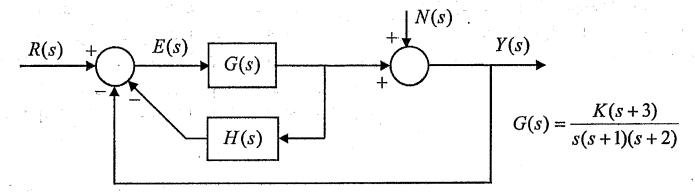


Fig. 2

3. Design a compensator using pole placement for the plant with transfer function $1/s^2$. Place the control poles at $\omega_n = 1$ rad/sec (the natural frequency), $\xi = 0.707$ (the damping ratio), and place the estimator poles at $\omega_n = 5$ rad/sec, $\xi = 0.5$. (14%)

4. For a unity-feedback control system with the open-loop transfer function

$$G(s) = \frac{b}{s(s+a)}$$

Find values for a and b so that the damping ratio is $\xi = 0.707$ and the velocity constant $k_v = 20 \text{ sec}^{-1}$. (16%)

- 5. The block diagram of a control system is shown in Fig. 3.
 - (a) Write the dynamic equation in vector-matrix form:

$$\dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, u(t) \,, \quad y(t) = \mathbf{C} \mathbf{x}(t) \,, \text{ where } \mathbf{x}(t) \equiv [x_1(t) \quad x_2(t)]^T \,. \tag{10\%}$$

- (b) Determine the condition on α and β so that the system is completely controllable. (5%)
- (c) Determine the condition on α and β so that the system is completely observable. (5%)

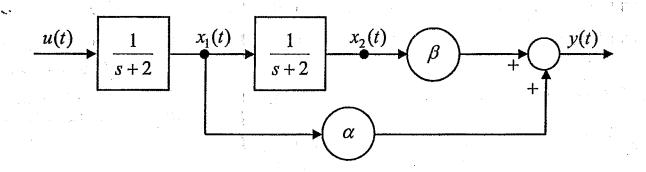


Fig. 3

6. The block diagram of a discrete-data system is shown in Fig. 4. If the input $u(t) = u_s(t)$, unit step function, ideal sampler T=1 sec.

(a) Find
$$Y_1(z)$$
. (5%)

(b) Find
$$Y_2(z)$$
. (5%)

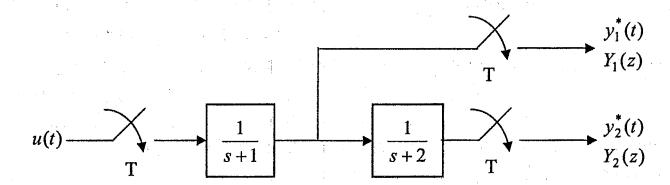


Fig. 4