大同大學 九十三 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 1/2 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

1. (10%)For the circuit in Fig. P1, derive the output waveform $v_o(t)$ and sketch $v_o(t)$ vs t plot for the input shown. Label the most positive and most negative output levels. Assume RC >> T, ideal diode.

- 2. (6%)In Fig. P2, two identical BJTs are biased in the forward-active region by current sources with 10:1ratio. Caculate the the voltage V at temperature T=25° C.
- 3. (12%)A feedback amplifier for which the open-loop transfer function is given by $A(s) = \frac{10^3}{s}$, let the feedback factor β be a constant independent of

$$A(s) = \frac{10}{(1 + \frac{s}{10^4})(1 + \frac{s}{10^5})^2}, \text{let the feedback factor } \beta \text{ be a constant independent of } \beta$$

frequency.

- (a). Find the frequency ϖ_{π}^{\dagger} at which the phase shift is -180°
- (b). Calculate the critical value $eta_{ ext{max}}$ which will keep the amplifier stable.
- 4.(18%) Consider the two-stage amplifier shown in Fig. P4, where $\mu_n C_{ox} = 2.5 \times \mu_p C_{ox} = 100 \mu A/V^2$, $V_{tn} = V_{tp} = 0.6 V$, $\lambda_n = \lambda_p = 0.04 V^{-1}$. All the transistors have a channel length of 1 μ m, and the channel widths are indicated in the figure.
- (a) Find the low-frequency gain for the first and second stages (v_{oI}/v_d) and v_{o2}/v_{oI} , respectively.
- (b) Neglecting the internal capacitances, estimate the pole and zero due to the compensation capacitor Cc.

Fig. P4

Fig. P5

5. (12%) Assuming transistors Q1 and Q2 are matched, estimate R_E and the output resistance R_o for the Wildlar current source shown in Fig.P5, where V_T =26mV, β =120 and V_A =100V.

大同大學 九十三 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 2/2 頁

6. (8%) Consider a Miller integrator shown in Fig. P6, and its output is initially zero. Sketch the output waveform for the circuit when fed with a string of pulses of 20µs duration and 2V amplitude rising from 0V. How many pulses are required for an output voltage change of 1V?

Fig. P6

7. (12%)Determine the following gates or circuits are belong to positive or negative egdge trigger, why? Describe briefly.

(c)

- 8. (12%) In the MOS inverters, $(W/L)_{pinv}$ and $(W/L)_{ninv}$ are the size of the PMOS and NMOS respectively. Describe the relationship between $(W/L)_{pinv}$ and $(W/L)_{ninv}$ (>,< or =) required to meet the following conditions.
 - (a). if we need noise margin high (NMH) equals to noise margin low (NML)
 - (b), if we need the propagation delay $t_{PHL} > t_{PLH}$.
 - (c). if we need the switching threshold voltage (V_M) is less than half of power supply V_{DD} , i.e. $V_M < (1/2)V_{DD}$.

You must describe why it is briefly.

- 9. (10%)Using two stage buffer to drive an external capacitor C_{ext} of 2.5 pF, If the first stage inverter has the input capacitor, C_g , of 100fF with the minimum size (i.e. W/L = 1) transistors, and the size of the second stage inverter is f.
 - (a). Find the size f to optimumize the propagation delay and find the delay in terms of t_{p0} which is the delay of an inverter to drive a same size inverter.
 - (b). If we need the minimum energy, what is the size f? And find the energy with $V_{DD} = 5$ Volts.

