大同大學 九十四 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 1/2 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 三

T以使用字典; <u>可以</u>使用計算器。

1. (12%) In Fig. 1, $\mu C_{ox}(W/L) = 1mA/V^2$ for both NMOS and PMOS, $V_m = -V_{tp} = 1V$ and neglect the body effect. Calculate I_{Dn} , I_{Dp} and V_O when $V_I = 2.5V$, -2.5V.

Fig. 1

Fig. 2

- 2. (22%) Refer to Fig. 2, neglect the body effect, the channel modulation, and the Early effect. The parameters for BJT are $\beta = 100$ and $I_S = 10^{-14} A$, for PMOS, $\mu_p C_{ox} = 50 \mu A/V^2$, W/L = 100 and $V_{ip} = -0.7V$.
 - (a) In case $v_{IN}=0$, calculate the value of V_1 and V_2 which will keep $i_1=i_2=100\,\mu A$.
 - (b) With V_1 and V_2 as calculated as in part (a), apply an ideal source v_{IN} , sketch the small signal equivalent circuit and calculate the input resistance R_i , output resistance R_o and small signal voltage gain.
- 3. (8%) For the feedback circuit shown in Fig.3, the amplifier has a low-frequency gain of 2000 and a single-pole rolloff at 1 kHz. If β is 0.5, find the low-frequency gain and the bandwidth of the feedback circuit.
- 4. (15%) Consider the differential pair shown in Fig. 4, where W/L values are given in the figure, $\mu_p C_{ox} = 25 \mu \text{A/V}^2$ and $V_{tp} = -0.6 \text{V}$. Neglect the channel length modulation effect.
 - (a) Find the minimum value of v_{id} that causes M1 to conduct the entire current I.
 - (b) Find the equivalent small-signal transconductance for the differential pair (input: v_{id} , and ouput: $i_{D1}-i_{D2}$).
 - (c) What is the lowest value of V_{CM} (v_{id} =0) for which M1 and M2 remain in saturation?

Fig. 3

Fig. 4

〈背面继續〉

大同大學 九十四 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典;

可以使用計算器。

〈接前員〉

- (10%) Consider the common-source amplifier shown in Fig. 5, where W/L values are given in the figure, $\mu_n C_{ox} = 2.5 \times \mu_p C_{ox}$ $=100\mu A/V^2$, $V_{th} = -V_{tp} = 0.6V$, $\lambda n = 0.04V^{-1}$ and $\lambda p = 0.08V^{-1}$.
 - (a) Estimate the low-frequency voltage gain, where V_{IN} is given such that all transistors are in the saturation region.
 - (b) If C_{gd1} =5fF and C_{gs1} =80fF, estimate the total capacitance seen by R_{IN} .

Fig. 5

Fig. 6

- (18%) Determine the mode of operation (cutoff, active or saturated mode) for each transistor in the circuit shown in Fig. 6 when (a) Vin=0V, (b) Vin=5V. And assume $\beta_F = 100$, $\beta_R = 0.5$, $V_{BE(ON)} = 0.7V$, $V_{BE(sat)} = 0.8V$ and $V_{CE(sat)} = 0.1V$. Why? Descript it briefly.
- 7. (15%) (a) Draw a CMOS inverter with $V_{DD} = 5V$, where $\mu_n C_{ox} = 115 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$, and $V_{tn} = |V_{tp}| = 1V$.
 - (b) Assuming the W/L = 1 of the NMOS device, design the inverter with a 2.5V logic switching threshold voltage. What is the W/L of the PMOS device?
 - (c) Draw the curve of current $(I_{DN}=|I_{DP}|)$ vs V_{in} as V_{in} from 0V to 5V. Label the important points, like the voltages of start point and end point of the current flow.
 - (d) When the inverter with the load capacitor C_L, how does change the C_L affect the current curve in part (c)?