大同大學 95 學年度研究所碩士班入學考試試題

考試科目:工程數學 所別:電機工程研究所 第1頁 共2頁

註:本次考試 不可以 參考自己的書籍及筆記; 不可以 使用字典; 不可以 使用計算器。

- 1. Solve the initial value problem: $y' + \frac{2}{t+1}y = 3$; y(0) = 5. (Note: $y' \equiv \frac{dy}{dt}$) (8%)
- 2. Find the general solution of the following differential equation

$$y'' + 4y' + 4y = 2\cos(2t) - 3te^{-2t}$$
 (Note: $y' = \frac{dy}{dt}$ and $y'' = \frac{d^2y}{dt^2}$) (10%)

- 3. Solve the integral equation: $f(t) = e^{-3t} \left[e^t 3 \int_0^t f(\mathbf{a}) e^{3\mathbf{a}} d\mathbf{a} \right]$ (8%)
- **4.** Let R^4 have the Euclidean inner product. Find two vectors of norm 1 that are orthogonal to the three vectors u = (2, 1, -4, 0), v = (-1, -1, 2, 2), and w = (3, 2, -3, 4). (12%)
- 5. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (1) Find the roots of the characteristic equation of A.
 - (2) Find the sufficient condition such that the matrix A is diagonalizable and explain it. (8%)
- **6.** For the continuous-time periodic signal x(t)

$$x(t) = \begin{cases} 2, & 0 \le t \le 2 \\ -1, & 2 \le t < 4 \end{cases}$$
 and $x(t+4) = x(t)$

determine the fundamental frequency w_0 and the Fourier series coefficients a_k such that

$$x(t) = \sum_{k = -\infty}^{\infty} a_k e^{jk\mathbf{w}_0 t}.$$
 (12%)

(6%)

- 7. Let $X(\mathbf{w})$ denotes the Fourier transform of x(t).
 - (1) Find the Fourier transforms of $\frac{d}{dt}x(t-3)$ in terms of $X(\mathbf{w})$ (6%)
 - (2) Find the inverse Fourier transforms of $X^*(\mathbf{w}_0 \mathbf{w})$ in terms of x(t). (6%) (\mathbf{w}_0 is a constant)

8. A random variable *X* has a probability density function

$$f(x) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \text{eleswhere} \end{cases}, \text{ where } a \ne b$$

- (a) Find the distribution function of the random variable X. (3%)
- (b) Find the mean value of the random variable X. (3%)
- (c) Find the variance of the random variable X. (3%)
- (d) Find the variance of the new random variable Y = 4X + 2. (3%)
- **9.** Two random variables X and Y have means E[X]=1 and E[Y]=2, variances $\mathbf{s}_X^2=4$ and $\mathbf{s}_Y^2=1$, and a correlation coefficient $\mathbf{r}_{XY}=0.4$. New random variables V and W are defined by

$$V = -X + 2Y \qquad W = X + 3Y$$

- (a) Find the variance of V. (6%)
- (b) Find the E[VW]. (6%)

Note: E[Z] denotes the mean value of the random variable Z.

THE END

1. Solve the initial value problem
$$y' + \frac{2}{x+1}y = 3$$
; $y(0) = 5$. P.27 (8%)

Ans: $y = x + 1 + 4(x+1)^{-2}$

2. Find the general solutions of the following differential equation p.97

$$y'' + 4y' + 4y = 2\cos(2x) - 3xe^{-2x}$$

$$Ans: y = c_1 e^{-2x} + c_2 x e^{-2x} + \frac{1}{4}\cos(2x) - \frac{1}{2}x^3 e^{-2x}$$
(10%)

3. Solve the integral equation
$$f(t) = e^{-3t} \left[e^t - 3 \int_0^t f(\mathbf{a}) e^{3\mathbf{a}} d\mathbf{a} \right]$$
 p.146 (8%)

$$Ans: F(s) = \frac{s+3}{(s+2)(s+6)} = \frac{1}{4(s+2)} + \frac{3}{4(s+6)}$$

$$\Rightarrow f(t) = \frac{1}{4}e^{-2t} + \frac{3}{4}e^{-6t}$$

3. Solve the integral equation
$$f(t) = e^{-3t} \left[e^t - 3 \int_0^t f(\mathbf{a}) e^{3\mathbf{a}} d\mathbf{a} \right]$$
 p.146 (8%)

$$Ans: F(s) = \frac{1}{s+2} - \frac{3}{s+3} F(S)$$

$$\Rightarrow \frac{s+6}{s+3} F(S) = \frac{1}{s+2} \Rightarrow F(s) = \frac{s+3}{(s+2)(s+6)} = \frac{1}{4(s+2)} + \frac{3}{4(s+6)}$$

$$\Rightarrow f(t) = \frac{1}{4} e^{-2t} + \frac{3}{4} e^{-6t}$$

8.