大同大學 96 學年度研究所碩士班入學考試試題

考試科目:工程數學 所別:電機工程研究所 第1頁 共2頁

註:本次考試 不可以 参考自己的書籍及筆記; 不可以 使用字典; 不可以 使用計算器。

1. Solve the general solution of the following differential equation:

$$y' - \frac{2}{t}y = t^2 \sin(4t)$$
. (Note: $y' = \frac{dy}{dt}$) (8%)

- 2. The general solution of the nonhomogeneous differential equation $y'' + \alpha y' + \beta y = g(t)$ is given as $y(t) = c_1 e^t + c_2 t e^t + t^2 e^t$, where c_1 and c_2 are arbitrary constants. Determine the constant α and β and the function g(t). (Note: $y' \equiv \frac{dy}{dt}$ and $y'' \equiv \frac{d^2y}{dt^2}$) (10%)
- **3.** Find the inverse Laplace transform for the given F(s).

$$F(s) = \frac{e^{-5s}}{s^2 + 1} + \frac{s + 4}{s^2 + 4} + \frac{1}{s + 2}.$$
 (8%)

4. Let $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$.

- (a) Find all eigenvalues of A. (5%)
- (b) Find a maximum set S of linearly independent eigenvectors of A. (5%)
- **(c)** Is A diagonalizable?

(Note: If yes, find P such that $D = P^{-1}AP$ is diagonal; if no, state the reasons.) (5%)

5. Find the matrix representation of each of the following linear operators F on R^3 relative to the usual basis $E = \{e_1, e_2, e_3\}$ of R^3 ; that is, find $[F] = [F]_E$:

(a)
$$F$$
 defined by $F(x, y, z) = (x + 2y - 3z, 4x - 5y - 6z, 7x + 8y + 9z). (5%)$

(b)
$$F$$
 defined by the 3×3 matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 5 & 6 \end{bmatrix}$. (5%)

(c)
$$F$$
 defined by $F(e_1) = (1, 3, 5), F(e_2) = (2, 4, 6), F(e_3) = (7, 7, 8).$ (5%)

(4%)

6. Let $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ be the Fourier series representation of the continuous-time

periodic signal $x(t) = \begin{cases} 1, & 0 \le t < 1 \\ 3, & 1 \le t \le 2 \\ 0, & 2 \le t < 4 \end{cases}$ and x(t+4) = x(t).

- (a) Find the fundamental frequency ω_0 . (6%)
- **(b)** Find the Fourier coefficients a_0 and a_2 . (6%)
- 7. Let $X(j\omega)$ be the Fourier transform of the continuous-time signal x(t).

$$X(j\omega) = \begin{cases} \pi, & |\omega| \le 1 \\ 0, & \text{otherwise} \end{cases}$$
.

(a) Find
$$x(t)$$
. (6%)

(b)
$$\int_{-\infty}^{\infty} \left| x(t) \right|^2 dt = ? \tag{6\%}$$

8. Let W be a random variable equal to the sum of two independent random variables X and Y:

$$W = X + Y$$
,

where the density functions of X and Y are assumed to be

$$f_X(x) = \begin{cases} 1/4 & 0 \le x \le 4 \\ 0 & \text{eleswhere} \end{cases}, \quad f_Y(y) = \begin{cases} 1/2 & 0 \le y \le 2 \\ 0 & \text{eleswhere} \end{cases}.$$

- (a) Find the density function of the random variable W.
- **(b)** Find the mean value of the random variable W. (4%)
- 9. A random variables X has mean E[X] = -3 and variance $\sigma_X^2 = 2$. A new random variable Y is defined by

$$Y = 2X - 3$$
.

(a) Find
$$E[X^2]$$
. (4%)

(b) Find
$$E[Y^2]$$
. (4%)

(c) Find
$$\sigma_Y^2$$
. (4%)

Note: E[Z] denotes the mean value of the random variable Z.