大同大學 96 學年度研究所碩士班入學考試試題

考試科目:電子學 所別:電機工程研究所 第 1/1 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

- 1. (16%) (a) The Widlar current source shown in Fig. 1 is biased at $V^+=5V$, $V^-=-5V$, $V_{BE1}=0.7V$ with resistor $R_1=9.3$ K Ω and $R_E=9.58$ K Ω . Calculate I_{REF} and I_O .
 - (b) Derive the output resistance (R_0) and calculate it with BJT's V_A =80 V and β =100.

- 2. (17%) Refer to Fig. 2, where $I_{REF}=100\mu A$ and all transistors have W/L=100 μ m/1.6 μ m, $\mu_n C_{ox}=90\mu A/V^2$, $\mu_p C_{ox}=30\mu A/V^2$, $1/\lambda_n C_{ox}=90\mu A/V^2$
 - = V_{An} =12.8V, $1/|\lambda_p|$ = $|V_{Ap}|$ =19.2V, and the body effect factor χ =0.15 for Q1. Calculate g_{m1} , g_{mb1} , r_{o1} , r_{o2} , the voltage gain $A_v = \frac{v_o}{v_i}$

and the input resistance R_{in}.

- 3. (10%) (a) Design an inverting opamp circuit for which the gain is -5V/V and an input resistance of $10k\Omega$. Draw the circuit.
 - (b) If the opamp has an open-loop gain of 600V/V, determine the actual gain of the inverting opamp circuit designed in part (a).
- 4. (24%) Consider the differential amplifier shown in Fig. 3, where $(W/L)_1=(W/L)_2=100$, $(W/L)_{B1}=20$, $(W/L)_{B2}=100$, and $\mu_n C_{ox}=2.5\times\mu_p C_{ox}=100\mu\text{A/V}^2$, $V_{tn}=-V_{tp}=0.6\text{V}$, $\lambda_n=\lambda_p=0.04\text{ V}^{-1}$. For DC bias calculations, neglect channel-length modulation effect.
 - (a) For I_{bias} =40 μ A, find the required value of R.
 - (b) If the DC voltage at the output is 2V, find the W/L ratio for M3 and M4.
 - (c) Determine the low-frequency differential gain (v_{out}/v_d) .
 - (d) Estimate the -3dB frequency in Hz.
 - (e) Find the input common-mode (V_{CM}) range.
- 5. (25%) (a) Draw the schematic diagram of a CMOS inverter with the substrate connection.
 - (b) Draw the input and output voltage transfer characteristic curve with $V_{DD} = 3.3$ volts, $V_{tn} = |V_{tp}| = 1$ volt, and define the range in which both transistors are saturated.
 - (c) Draw the input voltage V_{in} and the drain current $I_{DN} = |I_{DP}|$ transfer curve.
 - (d) Find the $(W/L)_{NMOS}/(W/L)_{PMOS}$ if noise margin NM0 = NM1 is required. Assume $\mu_n C_{ox} = 115 \ \mu A/V^2$ and $\mu_p C_{ox} = 30 \ \mu A/V^2$. You must label the critical break points in the curves.
- 6. (8%) The identical NMOS transistors are connected as Fig. 4. Determine the output voltage (V_o) in terms of V_{DD} and V_t , where V_t is the threshold voltage of device. (Neglect the body effect).

Fig. 3 Fig. 4