大同大學 98 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典;

可以使用計算器。

- 1. The circuit as shown in Fig.1, $R_1 = 5 \text{ K}\Omega$, $R_2 = 10 \text{ K}\Omega$, the diode cut-in voltage $V_{D0} = 0.7 \text{ V}$, draw the V_0 vs V_1 plot, calculate and indicate the voltages at the breakpoints. (13%)
- 2. Three-stage amplifier as shown in Fig.2, neglect other capacitances and assuming identical MOS transistors with $\lambda=0$.
 - (a) In terms of transconductance g_m , R_D and C, derive the transfer function $A(s) = \frac{V_o}{V}$. (7%)
 - (b) $A(j\omega) = A(s)|_{s=j\omega} = |A(j\omega)|e^{j\phi}$, write an expression for $|A(j\omega)|$, and draw the Bode plot $|A(j\omega)|_{dB}$ vs ω (log scale). (6%)
 - (c) If we apply negative feedback with feedback factor $\beta = 1$ around the amplifier, determine the condition for the amplifier to be stable. (6%)

- 3. For the MOS current-steering circuit shown in Fig. 3, $I_{REF}=100 \mu A$, $\mu_n C_{ox}=160 \mu A/V^2$, $\mu_p C_{ox}=64 \mu A/V^2$, $V_{tn}=0.5 V$, V_{tp} =-0.6V, $(W/L)_1$ =20, $(W/L)_2$ =30, $(W/L)_{3,4}$ =75 and $(W/L)_{5,6}$ =150.
 - (a) Neglecting channel-length modulation and body effects, determine I₁, I₂ and V_{G3}. (8%)
 - (b) Determine the maximum allowable voltage at the output. (4%)
 - (c) Find the output resistance R_o . (λ = 0.05 V^{-1}) (5%)
- Consider the differential pair shown in Fig.4, where $\mu_n C_{ox} = 160 \,\mu\text{A/V}^2$, $V_{tn} = 0.5 \,\text{V}$ and $(W/L)_{1,2} = 20$.
 - (a) Find the minimum required voltage for v_{IN} such that $i_{DI} = I_B$ and $i_{D2} = 0$. (4%)
 - (b) Draw i_{D1} and i_{D2} with respect to v_{IN} for Fig.4. Show the critical voltage and current values. (5%)

Fig.3

Fig.4

大同大學 98 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 2/2 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典;

可以使用計算器。

- 5. Consider the common-source amplifier shown in Fig.5, where $V_{DD}=3V$, $\mu_n C_{ox}=160$ μ A/V², $\mu_p C_{ox} = 64 \mu$ A/V², $V_{tn} = 0.5$ V, $V_{tp} = -0.6$ V, $(W/L)_1 = 20$, $(W/L)_{2-3} = 50$ and $I_B = 100$ μA . The DC voltage V_{IN} is chosen such that all transistors are biased in the saturation region.
 - (a) Estimate the low-frequency voltage gain for the amplifier. ($\lambda_n = \lambda_p = 0.05 \text{ V}^{-1}$) (5%)
 - (b) Estimate the -3dB bandwidths for the amplifier with R_S =1M Ω and C_L =5pF. Assume C_L is the total capacitance at the output node. (C_{gs1} =0.2pF and C_{gd1} =0.02pF) (5%)

Fig.5

- 6. The circuits of Fig.6 show different implementations of an inverter whose output is connected to a capacitors. (20%)
 - (a) Which one of the circuits consumes static power when the input is high?
 - (b) Which one of the circuits consumes static power when the input is low?
 - (c) V_{OH} of which circuit(s) is 1.2 V?
 - (d) V_{OL} of which circuit(s) is 0 V?
 - (e) The proper functionality of which circuit(s) depends on the size of the devices?

- 7. (a) Design a static CMOS gate that performs the Boolean function $F = (A \oplus B)C + BC$. You can use inverters to generate any complementary inputs needed. Sizing is not required here. (6 %)
 - (b) Find the logic function for the circuit in Fig.7. (6%)

Fig.7