大同大學 99 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 1/2 頁

註:本次考試 不可以参考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

- 1. (10%) Assume the diodes in the circuit of Fig. 1 to be ideal.
 - (a) Derive the relationship of v_0 and v_1 .
 - (b) For $-10V \le v_I \le 10V$, draw the v_O vs v_I plot and indicate the voltages at the breakpoints.

- 2. (24%) The MOSFETs in the circuit of Fig. 2 are matched, having $\mu_n C_{ox}(W/L)_n = \mu_p C_{ox}(W/L)_p = 1 \text{mA/V}^2 \,, \, \left|V_{tn}\right| = \left|V_{tp}\right| = 0.5 \text{V} \,, \text{ and the resistance } R = 1 \text{M}\Omega.$
 - (a) For G and D open, calculate the dc voltage at $G(V_G)$ and dc drain current $I_{D1}(Q_1)$ and $I_{D2}(Q_2)$.
 - (b) For finite r_o ($\lambda_n = |\lambda_p| = 0.05 \text{ V}^{-1}$), draw the small-signal equivalent circuit, calculate the voltage gain (v_d/v_g) from G to D and find the input resistance (R_{in}) at G.
- 3. (10%) Find V_1 , V_2 and $I_1 \sim I_3$ in the circuit shown in Fig. 3. Assume $|V_{BE}| = 0.7V$ and $\beta = \infty$.

- 4. (14%) Consider the circuit shown in Fig. 4.
 - (a) Identify the feedback topology, and find the feedback factor β .
 - (b) If the opamp is ideal, find the closed-loop gain v_O/v_I .
 - (c) If the opamp gain is A=300, find the closed-loop gain v_O/v_I .
 - (d) The ideal opamp is specified to have output current limits of ±20mA. If the circuit is fed with a low-frequency sine-wave signal of peak voltage 0.5V, what is the lowest value of R_L for which an undistored sine-wave output is obtained?

大同大學 99 學年度研究所碩士班入學考試試題

考試科目:電子學

所別:電機工程研究所

第 2/2 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

〈接前員〉

- 5. (12%) Consider the common-source amplifier shown in Fig.5, where $V_{DD}=3.3V$, $\mu_n C_{ox}=200 \ \mu A/V^2$, $\mu_p C_{ox}=80 \ \mu A/V^2$, $V_{tn}=0.5V$, $V_{tp}=-0.6V$, $(W/L)_1=20$, $(W/L)_{2,3}=50$ and $I_B=125 \ \mu A$.
 - (a) Calculate the required input DC voltage $V_{\rm IN}$ such that all transistors are biased in the saturation region.
 - (b) Estimate the low-frequency voltage gain for the amplifier. $(\lambda_n = |\lambda_p| = 0.05 \text{ V}^{-1})$
 - (c) Estimate the -3dB bandwidths for the amplifier with C_L =5pF. Assume C_L is the total capacitance at the output node.

6. (18%)

- (a) Draw the schematic diagram of a CMOS inverter with the substrate connection.
- (b) Find the input range which causes a direct-path current, i. e. both transistors are conducted simultaneously, if the inverter has the power supply $V_{DD} = 3.3$ Volts and the device threshold voltage is $V_{tn} = |V_{tp}| = 0.7$ volts.
- (c) If a CMOS inverter has the load capacitance C_{L} , then the direct-path current is function of the rise time, falling time and C_{L} . How does it affect the direct-path current when the rise time and C_{L} are increased repectively?
- 7. (12%) Please write down the Boolean functions of the CMOS circuits shown in Fig. 6 and identify these logic functions (AND, OR, XOR, MUX etc.) performed.

Fig. 6